Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites

نویسندگان

  • Haibao Lu
  • Yongtao Yao
  • Wei Min Huang
  • David Hui
چکیده

This paper presents an effective approach to significantly improve the electrical properties and recovery performance of shape memory polymer (SMP) nanocomposites that are able for Joule heating triggered shape recovery. Reduced graphene oxide (GO) is self-assembled and grafted onto the carbon fibers to enhance the interfacial bonding with the SMP matrix via van der Waals and covalent crosslink, respectively. Experimental results verify that the electrical properties of SMP nanocomposites are significantly improved via a synergistic effect of GO and carbon fiber. The morphology and porous structure of GO on the carbon fiber are characterized by electron microscope and optical microscopes, respectively. Furthermore, the behavior of electro-activated recovery and the resultant temperature distribution within SMP nanocomposite are monitored and characterized. We demonstrate that this simple way is able to produce electro-activated SMP nanocomposites which are applicable for Joule heating at a lower electrical voltage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-Hybrids Based on Surface Modified Reduced Graphene Oxide Nanosheets and Carbon Nanotubes and a Regioregular Polythiophene

    The multi-walled carbon nanotubes (CNTs) and reduced graphene oxide (rGO) nanosheets were functionalized with 2-hydroxymethyl thiophene (CNT-f-COOTh) and 2-thiophene acetic acid (rGO-f-TAA) and grafted with poly(3-dodecylthiophene) (CNT-g-PDDT and rGO-g-PDDT) to manipulate the orientation and patterning of crystallized regioregular poly(3-hexylthiophene) (P3HT). Distinct nano-hybrid structu...

متن کامل

Enhanced electrical conductivity properties of Graphene Oxide nanocomposites functionalized with Polyvinyl Alcohol

We report the synthesized and preparation of graphene oxide (GO) nanocomposite functionalized with polyvinyl alcohol (PVA) with different concentration of graphene oxide 0, 1, 1.5, 2, 2.5, 3, 3.5 and 4% weight. This synthesized confirmed by FT-IR. The electrical conductivity of the all nanocomposite was measured at 25°C for all samples and the resulted showed electrical conductivity ...

متن کامل

Thermal conductivity of high performance carbon nanotube yarn-like fibers

Articles you may be interested in Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite Appl. Filler geometry and interface resistance of carbon nanofibres: Key parameters in thermally conductive polymer composites Appl. Effective multifunctionality of poly(p-phenylene sulfide) na...

متن کامل

Enhanced electrical conductivity properties of Graphene Oxide nanocomposites functionalized with Polyvinyl Alcohol

We report the synthesized and preparation of graphene oxide (GO) nanocomposite functionalized with polyvinyl alcohol (PVA) with different concentration of graphene oxide 0, 1, 1.5, 2, 2.5, 3, 3.5 and 4% weight. This synthesized confirmed by FT-IR. The electrical conductivity of the all nanocomposite was measured at 25°C for all samples and the resulted showed electrical conductivity ...

متن کامل

Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.

With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014